
Managing ETL Workflow using Airflow

Objective:
ETL is the building block of data engineering. To understand much better the concept of managing

ETL workflow, I have tried in this project to extract data stored on google drive using python, and

transform it using pandas library as per the required way and load it on s3 bucket of AWS. To manage

this entire workflow I have used apache-Airflow and AWS ec2, IAM, and s3 bucket.

Project implemented on Cloud

Project implemented on Local Machine

Though Python, Airflow, and all of its libraries can be installed on windows, but the problem is that

one of airflow’s required lib called pwd is only available for Linux version of python so you will face

problem implementing this project. One better workaround for the people who have only win 10

machine is to install WSL or windows subsystem for Linux. After enabling WSL from windows

features, reboot it and launch SUSE Linux from Microsoft Store. Update it and rest of the steps will be

same as explained for EC2 machine.

Apache-Airflow:
Apache-Airflow is a platform to programmatically author, schedule and monitor workflows. Apache

Airflow is an open-source workflow orchestration tool that automates and schedules complex data

workflows through Directed Acyclic Graphs (DAGs). It offers several key benefits. Firstly, Airflow

allows users to define workflows as DAGs, specifying tasks and their dependencies. These workflows

can be scheduled to run at specific times or intervals, providing automation and consistency.

Airflow's extensibility is a major advantage, enabling integration with a wide range of technologies

and services. It also offers robust error handling and monitoring capabilities, ensuring reliability in

data pipelines.

Airflow's capabilities include a rich set of pre-built operators for common tasks, the ability to define

custom operators, and support for dynamic and parameterized workflows. Its extensible nature

allows users to incorporate cloud services, databases, and other tools seamlessly. With its

comprehensive scheduling, monitoring, and error-handling features, Apache Airflow is a versatile

choice for orchestrating data workflows in various industries, ensuring data accuracy and timeliness

while reducing manual effort and errors. https://airflow.apache.org/docs/apache-airflow/2.2.5/

Amazon S3 (Simple Storage Service)
It is a versatile, highly scalable, and durable object storage solution by AWS. Users can store data as

objects within "buckets." S3 provides high data durability, fine-grained security, and global

accessibility. It's cost-effective, supports versioning, data lifecycle management, and seamless

integration with analytics tools. In your project, an S3 bucket efficiently stored your transformed

data, ensuring durability, scalability, and easy integration with other AWS services or applications.

Windows Subsystem for Linux (WSL)
It is a compatibility layer within Windows that enables running Linux distributions alongside your

Windows environment. WSL provides a powerful and flexible environment for development, testing,

and running Linux applications on Windows. It offers seamless integration with Windows tools,

efficient resource utilization, and access to a wide range of Linux software. In your project, you

leveraged WSL to run Linux-based applications, harnessing its compatibility and performance

benefits within the Windows ecosystem.

Python was the primary scripting language in my Airflow project, allowing me to create custom

operators, sensors, and tasks tailored to my specific needs. Its compatibility with Airflow's

PythonOperator made it an excellent choice for executing data pipeline steps. Each DAG is nothing

but a python script

Pandas was a cornerstone of my Airflow project, serving as the key tool for data manipulation and

transformation. Its DataFrame structure simplified data handling, allowing me to efficiently

preprocess and analyze data before moving it between different stages of the pipeline. I used to

transform data in desired structure/

SQLite was used in my Airflow project to handle local database tasks, such as managing task

statuses and logging. Its lightweight and self-contained nature made it a practical choice for

maintaining metadata and facilitating task execution. Airflow uses sqlite to store its metadata.

https://airflow.apache.org/docs/apache-airflow/2.2.5/

Google Drive integration in my Airflow project was crucial for accessing and sharing data. Its

cloud-based storage capabilities allowed seamless data extraction and retrieval, particularly useful

when working with external data sources. Each file stored in google drive is give a unique id. I used

that id to extract data. I have uploaded 3 files and made them public in sharing. Importantant thing

to note here is that all files have got ids. Instead of names. See my DAG.

MySQL was employed to manage structured data efficiently within my Airflow project. Its reliability

and strong data consistency features made it suitable for storing critical pipeline metadata and

ensuring data integrity throughout the workflow. The transformed data has been loaded to my sql in

my second task of the DAG.

Let’s implement it for AWS Cloud:

Assuming that you already have AWS free tier account, and a windows 10 machine. Sign in to AWS

console. Launch an ec2 instance, give a name, using suse linux image, create a new key/pair or use

existing, instance type t2 micro, create a security group but allow all traffics and launch. Click on

‘connect to instance’ and copy SSH script.

On windows machine, Open cmd go to folder where you have saved the dot pem file. Paste the ssh

script copied above and press enter. You will see Linux prompt. You are connected to ec2 server.

Use the following 20 commands one by one in the cmd window after connecting to ec2 by

removing my comments.

1. sudo zypper refresh

2. sudo zypper update

3. curl -O https://bootstrap.pypa.io/pip/3.6/get-pip.py

4. sudo python3 get-pip.py

5. rm get-pip.py

6. pip install --upgrade pip

7. pip install --upgrade setuptools

8. pip install apache-airflow

9. pip3 install apache-airflow

10. pip install pandas

11. pip install s3fs

12. airflow users create --username asawir --firstname Asawir --lastname Jinabade --role Admin

--email xxxxx@gmail.com

create user and give a simple password

13. airflow db init

14. cd airflow # to change to airflow folder

15. vim airflow.cfg

to check dags_folder path go to that path

16. mkdir dags

17. cd dags

mailto:xxxxx@gmail.com

18. vim main.py # and create a DAG file main.py using vim main.py and paste the python code

and save :wq enter

19. airflow scheduler # to start scheduler

in another cmd window connect ec2 and then

20. airflow webserver

Perform the following operations in aws console:
1. Create s3 bucket, give a unque name. mine is s3://asawir-airflow-project-bucket here my

processed file will be saved.

2. IAM: create a new IAM role which allows full access to ec2 and s3 bucket by clicking to ec2

instance, action, security, modify role, create IAM role. Create role, aws service, ec2, next,

search ec2, select “AmazonEC2FullAccess” clear, and search s3 enter, select

“AmazonS3FullAccess” click next, give a name and click create role. From instance, action

security and modify role select the newly created role and click update IAM role .

3. From instance summary screen copy public address. Paste as in url section of browser like

“ec2-13-126-65-119.ap-south-1.compute.amazonaws.com, add a colon and 8080 at the end

press enter.

4. Enter user id and password to enter as per para 12 above, into the airflow web browser, click

you DAG “booking_ingestion_with_google”. Trigger it and see the tasks visual are green by

refreshing, if all green go to s3 bucket and see that the processed file “processed_data.csv
“is uploaded.

1. If you don’t find your DAG “booking_ingestion_with_google”

see the error in red color and solve by re-opening your dag file. i.e. main.py in dags folder

and change accordingly.

Thank you

https://us-east-1.console.aws.amazon.com/iamv2/home?region=us-east-1#/policies/details/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2FAmazonEC2FullAccess
https://us-east-1.console.aws.amazon.com/iamv2/home?region=us-east-1#/policies/details/arn%3Aaws%3Aiam%3A%3Aaws%3Apolicy%2FAmazonS3FullAccess
https://s3.console.aws.amazon.com/s3/object/asawir-airflow-project-bucket?region=ap-south-1&prefix=processed_data.csv

